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Abstract 

In this paper we present, demonstrate and validate a method for predicting city-wide electricity gains from 

photovoltaic panels based on detailed 3D urban massing models combined with Daysim-based hourly 

irradiation simulations, typical meteorological year climactic data and hourly calculated rooftop 

temperatures. The resulting data can be combined with online mapping technologies and search engines 

as well as a financial module that provides building owners interested in installing a photovoltaic system 

on their rooftop with meaningful data regarding spatial placement, system size, installation costs and 

financial payback. As a proof of concept, a photovoltaic potential map for the city of Cambridge, 

Massachusetts, USA, consisting of over 17,000 rooftops has been implemented as of September 2012. 

The new method constitutes the first linking of increasingly available GIS and LiDAR urban datasets with 

the validated building performance simulation engine Daysim, thus-far used primarily at the scale of 

individual buildings or small urban neighborhoods. A comparison of the new method with its 

predecessors reveals significant benefits as it produces hourly point irradiation data, supports better 

geometric accuracy, considers reflections from neareby urban context and uses predicted rooftop 

temperatures to calculate hourly PV efficiency. A validation study of measured and simulated electricity 

yields from two rooftop PV installations in Cambridge shows that the new method is able to predict 

annual electricity gains within 3.6 to 5.3% of measured production when calibrating for actual weather 

data and detailed PV panel geometry. This predicted annual error using the new method is shown to be 

less than the variance which can be expected from climactic variation between years. Furthermore, 

because the new method generates hourly data, it can be applied to peak load mitigation studies at the 

urban level. This study also compares predicted monthly energy yields using the new method to those of 

preceding methods for the two validated test installations and on an annual basis for ten buildings selected 

randomly from the Cambridge dataset. 
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INTRODUCTION 

As our knowledge of how to technically make individual buildings more energy efficient matures, the challenges to 

accomplish widespread adoption of energy saving measures are changing. For individual building owners, 

implementing energy efficiency measures has become primarily a question of obtaining meaningful information 

regarding installation costs, potential energy savings and payback times. In tandem with our advances in building 

technology, cities in many countries now command unprecedented access to data of their jurisdictionôs building 

stock which can be further analyzed and mapped to inform policy decisions. Within this context, it has become 

increasingly popular for cities and municipalities to create ósolar potential mapsô with the intent of promoting 

renewable energy generation through photovoltaic (PV) panel installations within their jurisdictions. In the United 

States, larger cities such as Boston, Los Angeles, New York City and Portland provide online maps which allow 

building owners to look up their address and view personalized predictions such as, 

¶ electric production from a PV system (kWh) 

¶ energy savings from a solar hot water (SHW) system (therms)  

¶ resulting annual electricity savings (dollars) 

¶ carbon savings (lbs) 

¶ useful roof area for installing PV panels (sq. ft.) 

¶ system payback period (years) 

¶ system costs (dollars) 

¶ local rebates and incentive programs (dollars savings) 

 

The objective of these maps and accompanying personalized property information is to increase the environmental 

awareness of residents, reduce greenhouse gas emissions and to improve the sustainable image of a city through the 

expansion of solar energy technology. While a number of cities have already generated such solar maps, to the 

 

Table 1 Survey of Existing Solar Potential Mapping Methods in North America 

CITY  URL FLAT ROOF METHOD (2012) METHOD (2013) 

Anaheim http://anaheim.solarmap.org/ No Solar Analyst Unknown 

Berkeley http://berkeley.solarmap.org/ Yes Constant Unknown 

Boston http://gis.cityofboston.gov/SolarBoston/ Yes Solar Analyst Solar Analyst 

Denver http://solarmap.drcog.org/ No Unknown PVWatts 

Los Angeles http://solarmap.lacounty.gov/ No Unknown Unknown 

Madison http://solarmap.cityofmadison.com/madisun/ No Constant PVWatts 

New York City http://nycsolarmap.com/ No Solar Analyst PVWatts 

Portland http://oregon.cleanenergymap.com/ Yes Constant No longer exists 

Salt Lake City http://www.slcgovsolar.com/ No Solar Analyst Unknown 

San Diego http://sd.solarmap.org/solar/index.php ? Unknown Unknown 

San Francisco http://sf.solarmap.org/ Yes Constant Constant 

Sacramento http://smud.solarmap.org/ No -- Unknown 

Orlando http://gis.ouc.com/solarmap/index.html No -- Unknown 

Various http://www.geostellar.com/  No -- Unknown 
 

http://anaheim.solarmap.org/
http://berkeley.solarmap.org/
http://gis.cityofboston.gov/SolarBoston/
http://solarmap.drcog.org/
http://solarmap.lacounty.gov/
http://solarmap.cityofmadison.com/madisun/
http://nycsolarmap.com/
http://oregon.cleanenergymap.com/
http://www.slcgovsolar.com/
http://sd.solarmap.org/solar/index.php
http://sf.solarmap.org/
http://smud.solarmap.org/
http://gis.ouc.com/solarmap/index.html
http://www.geostellar.com/
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authorsô knowledge, limited attention has been paid to the assumptions and calculation methods underlying these 

maps. This paper is organized as follows: Initially a survey is conducted of existing solar potential maps in the 

United States as well as of existing research. The underlying methodologies used in practice and research are 

discussed in detail. We then present a new method of how a validated solar radiation calculation algorithm, thus far 

typically used at the individual building scale, can be combined with an hourly rooftop temperature model and 

applied to a city-sized model of Cambridge, Massachusetts, USA. The method creates city-wide solar potential maps 

with a high degree of spatial and predictive accuracy based on the generation of a high resolution three-dimensional 

(3D) model sourced from available geographic information systems (GIS) data. As a validation of the new method, 

hourly and daily energy yields from two actual operating PV systems are compared against the new methodôs 

predictions using calibrated weather data. Next, results from the new method are compared with those one would 

obtain using existing methods. Finally, we discuss what relevance varying simulation results may have at both the 

individual building owner and city-wide policy level using ten sample buildings from the Cambridge building stock.  

The authors conducted a review of solar potential maps for North American cities (Table 1). In March of 2012, 

eleven maps were surveyed, and one year later thirteen maps were surveyed. We found that there are three typical 

predictive methodologies in place for calculating rooftop irradiation and associated photovoltaic potential. In 2012, 

three (27%) of the surveyed maps used a constant assumption for solar irradiation reaching a building rooftop, 

defined in the following paragraph. One (9%) reported using the National Renewable Energy Laboratoryôs (NREL) 

PVWatts calculation module (Marion, et al. 2001). Another five (45%) used the Solar Analyst plugin within Esriôs 

ArcGIS program (Fu and Rich 1999). The remaining maps did not report their calculation methodology. In 2013, 

two maps switched to PVWatts as their prediction method, raising its usage to 23% of available North American 

solar potential maps. Simultaneously maps reporting using Solar Analyst dropped to just one (7.7%). In reality, the 

picture this paints is a skewed one. Of the thirteen maps surveyed which still exist, 39% (Anaheim, Denver, 

Madison, Sacramento and Orlando) require manual input of slope, azimuth and system size. These maps do not 

automatically map solar potential, but they often have accompanying raster graphics of sunlit hours to help users 

define their systems. 

Outside of already existing solar potential maps, there are several methods which have emerged from research. 

R.sun (Ġ¼ri and Hofierka 2004) has been used to map solar potential for large geographic areas and cities, but it has 

not, to the authorôs knowledge, been used in city-scale public solar potential mapping applications such as  those 

detailed in Table 1. PV Analyst (Choi et al. 2011), PV-GIS (Ġ¼ri, Huld and Dunlop 2005) and a series of other solar 

irradiation and photovoltaic calculation methods and case studies are also discussed in the proceeding paragraphs.   

Solar potential maps using a constant assumption simply predict that every point on a rooftop receives the same 

amount of solar irradiation irrespective of orientation and surrounding context. Usually this value is derived from 

annual global horizontal irradiation measurements from a nearby weather station. Such use of a constant, solar 

radiation value across a rooftop will be inaccurate in many cases, for example buildings with peaked roofs where 

each surface of the roof is oriented towards a different section of the sky. The use of a constant value also does not 

consider local urban context such as trees and neighboring buildings, which shade building rooftops. Those who 

employ this approach determine the useful roof area for PV installation by using either a constant percentage 

(Oregon Clean Energy Map 2012) or based on orthophotographic image analysis techniques (San Francisco Solar 

Map 2012 and Berkeley Solar Map 2012).  

The NREL PVWatts web service uses a considerably more detailed method (Marion, et al. 2001) in which hourly 

solar irradiation is distributed on a 40km square grid for the entire United States based on the typical meteorological 

year 2 (TMY), dataset (Marion et al. 2001). Local TMY2 irradiation data is used in combination with a manually 

input DC power rating, PV panel tilt and orientation as well as model-derived panel temperature conditions and 

climate-based sky models to determine energy production. While roof shape is treated with greater detail than in a 

solar constant approach, shading and reflections from adjacent urban surfaces also cannot be modeled using 

PVWatts. This suggests limited applicability in dense urban areas where buildings and trees may shade future PV 

panels. PVWatts has been validated by Cameron, Boyson and Riley (2008) using measured data from an unshaded, 

rack-mounted system. It was shown that PVWatts is accurate with an average bias between 9.6 to 10.2%. However, 

an interface such as PVWatts is difficult to automate for an entire city as every roof surface with a differing slope 

and azimuth must be input separately. The New York City Solar Map (2013) automates this practice, but all other 

existing maps using PVWatts do not. 



 

A method for predicting city-wide electric production from photovoltaic panels based on LiDAR and GIS data 

combined with hourly DAYSIM simulations  

Jakubiec, J. A. & Reinhart, C.F., 2013 

Page 4 of 23 

 

Esriôs Solar Analyst plugin represents the city as a digital elevation model (DEM). A DEM is a geolocated raster 

image where the values of individual pixels correspond to elevation measurements. A sky mask is initially generated 

based on the surrounding pixel values for each pixel in the DEM. Direct and diffuse components of irradiation are 

calculated based on the amount of the sky which can be seen from each pixel. Direct irradiation is calculated in 

accordance with the sun position, the slope of the DEM, a fixed sky transmissivity coefficient, and the distance a 

solar ray must travel through the atmosphere. Diffuse irradiation is calculated in much the same way as the direct 

component, based on either a uniform sky model or a standard overcast model; however, no solar map reports on its 

website which sky model was used. As Solar Analyst uses only a sky mask based on a DEM, it has no capacity to 

model reflected radiation from neighboring buildings, surrounding trees or the urban terrain. It has been proposed to 

assume a directional constant of reflected irradiation for obscured sky areas (Rich, et al. 1994), but it would be 

inadequate to consider complex reflections from surrounding buildings and landscape. In Solar Analyst, sky 

transmissivity and the ratio between direct and diffuse insolation are fixed, constant values throughout the year. 

These assumptions can have significant impact on calculated annual irradiation. For example, the Boston Logan 

TMY3 weather data illustrates a ratio between direct and diffuse irradiation which varies widely throughout the year 

(US Department of Energy 2012). Figure 1 displays diffuse horizontal irradiation versus direct horizontal irradiation 

from this data. Points are shaded based on the observed cloud cover at that hour. The mean direct-to-diffuse ratio of 

insolation for Boston is 64%; however, the standard deviation from the mean is 31%, and neglecting this variance is 

obviously incorrect. The reader may for example imagine a site with predominantly clear skies in the morning and 

cloudy afternoons. For that site an east-facing surface receives considerably more solar radiation than its west-facing 

counterpart, a climate-specific idiosyncrasy that Solar Analyst cannot resolve.  

 

Figure 1 Hourly Direct and Diffuse Radiation and Cloud Cover from Boston Logan TMY3 Weather Data 

R.sun (Ġ¼ri and Hofierka 2004) is a model implemented in the open source GRASS GIS program (GRASS 

Development Team 2013) which resolves perceived limitations noted in the Solar Analyst model. One major 

difference compared to Solar Analyst is that r.sun has the ability to model the solar insolation of very large 

geographic areas which transcend several differing climate zones by setting the percent of direct and diffuse 

irradiation as spatially resolved raster images rather than as fixed values as in Solar Analyst. A second notable 

difference is that r.sun makes a provision for ground reflected solar irradiation; however, its model assumes that all 

ground reflection is accounted for by surface inclination, global horizontal irradiation and ground albedo which does 

not account for shaded or unshaded portions of ground nor the actual geometry of its context. While r.sun is 

deployable across geolocated raster DEMs, it has significant limitations in usability for the purpose of annual city-

scale photovoltaic potential maps. The first limitation is that r.sun is only capable of modeling a single day or hour 

of irradiation at a time. This means that a detailed annual calculation requires at least 365 raster results images to be 

created and processed independently. A second limitation is that direct and diffuse percentages of irradiation can 
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only be set as raster image inputs and not as fixed values meaning that for modeling a small geographic area such as 

a city, it is inconvenient to model climactic effects. To model the typical daily changes from a source such as a 

weather file, it is necessary to create separate beam and diffuse percentage raster images for every day in the year. 

To consider typical hourly changes, as in the case of the example above where a city has clear mornings and cloudy 

afternoons, raster images need to be created for every hour in the year. It is appropriate to mention here than GRASS 

has a powerful scripting engine which can help in managing this task. 

Besides the methods discussed in the preceding paragraphs, many others have documented their process towards 

analyzing photovoltaic potential in cities and neighborhoods using GIS data and various simulation programs. PV-

GIS (Ġ¼ri, Huld and Dunlop 2005) is a web-based tool similar to PVWatts supporting African and European 

analysis which uses calculations from r.sun modified by measured direct and diffuse monthly average irradiation  

raster images as its underlying weather data source. PV Analyst (Choi et al. 2011) coupled TRNSYS simulations of 

photovoltaic panels with a DEM in Esriôs ArcMap tool, suggesting a desire for the application of validated 

algorithms in solar potential modeling; however, the tool is yet to be released. PV Analyst relies on Solar Analyst 

for shading calculations and TRNSYS for irradiation and PV yield calculations. Others (Brito et al. 2011, Nguyen 

and Pearce 2010, Nguyen and Pearce 2012), have used monthly averaged beam and diffuse solar data with r. sun to 

calculate photovoltaic potential of relatively small urban developments. Hofierka and Kanuk (2008) perform the 

same without noting how climate is accounted for. However, r.sun has mostly been applied to very large areas such 

as Europe and Africa (Ġ¼ri, Huld and Dunlop 2005, Bergamasco and Asinari 2011, Huld, Müller, and Gambardella 

2012, Ruiz-Arias 2012, Palmas et al. 2012), and its raster-based input methods suggest the tool is most appropriate 

for large geographic areas. Lukaļ et al. (2012) calculated direct and diffuse irradiation based on measured climate 

data, roof slope and aspect and overshadowing potential from neighboring buildings and landscape. Schallenberg-

Rodriguez (2013) eschews using a simulation engine at all by suggesting that for regional feasibility studies, 

relatively simple spreadsheet calculations are adequate; however, for spatially detailed building-rooftop analysis, 

such calculations are not capable of accounting for shading from contextual geometry or detailed resolutions of roof 

shape.  

Geometric and Material Assumptions 

Of the surveyed solar potential maps, four (28.6%) assume that all buildings in the city have flat roofs at a known 

elevation, four (28.6%) used a detailed DEM, five (35.7%) relied on user input to represent the roof slope and 

aspect, and the remaining map did not report its assumptions. Of cities utilizing the flat roof assumption, half 

assumed that a fixed percentage of the roof is suitable for PV (Boston, Portland). The others relied on a proprietary 

orthophotographic image analysis method for locating rooftop obstructions (Berkeley, San Francisco). Maps using 

DEMs determine useful roof area either by the predicted rooftop irradiation or by the number of daylit hours 

observed in a year. The effect on simulation results of assuming a flat roof are discussed later in the paper. 

The source height measurements for DEMs often come from LiDAR, Light Detection And Ranging. LiDAR is an 

established, accurate measurement system wherein a surveying aircraft emits rapid laser bursts and records the time 

until their visual return while tracking its location via Global Positioning Systems (GPS). The collected location and 

timed return data is later processed into geographically located point data. Practically, LiDAR is the most accurate 

way to measure an entire urban area, including detailed roof forms and landscape. The majority of detailed solar 

potential surveys of urban areas use LiDAR point measurements in constructing digital elevation models to use as 

input to solar irradiance calculations (Brito et al. 2011, Nguyen and Pearce 2010, Nguyen and Pearce 2012, 

Yimprayoon and Navvab 2010, Lukaļ et al. 2012, MadiSUN 2012, Geostellar 2013).  

None of the surveyed cities or research methods discussed in this section employ a method which considers 

physically accurate reflections from urban context. 

 

METHODOLOGY 

LiDAR Data , Accuracy, and the Construction of a Detailed Three-Dimensional Model 

The authorsô implementation of an urban solar potential map is based on the creation of a detailed 3D model in the 

validated Radiance / Daysim backward-raytracing daylight simulation engine (Ward 1995, Reinhart and 

Walkenhorst 2001). The advantages of creating an actual 3D representation of the city compared to a DEM are that 

roof surfaces can be properly modeled as smooth sloping planes rather than a pixelated height representation and 
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that accurate reverse-raytracing simulations can be implemented that account for reflections and shading from the 

surrounding context. The geometric information used in creating the 3D model of Cambridge comes from a 2010 

LiDAR survey of the city. The vertical accuracy of the data in the urban context of Cambridge was bounded to less 

than 1m root-mean-square error (RMSE). In validation tests of selected areas the RMSE between LiDAR and 

traditional GPS measurement methods was shown to be 0.062m (Alliance for Sustainable Energy 2010).  

The employed process of creating a detailed 3D urban model is illustrated with an example surrounding the Kresge 

Oval at the Massachusetts Institute of Technology in Figure 2. As LiDAR data is not uniformly sampled in plan, it 

creates an awkward data space (Figure 2(b)) where different point densities are present depending on the airplane 

path of flight. Initially, there were 126,624,764 points spread across Cambridge, which has a total area of 

approximately 18.5 km
2
 (4,500 acres). We uniformly resampled the LiDAR data over a plan grid of approximately 

1.25x1.25m (4ôx4ô) spacing, taking the mean of the first return data where multiple points existed. Resulting 

neighboring points which did not vary by greater than 0.3 meters vertically were discarded. This resulted in a 

simplification of the data space to a mere 9,403,750 points without losing much geometric resolution. The simplified 

LiDAR-derived points were then divided into two categories using publicly available GIS datasets from the City of 

Cambridge: buildings and ground scape (Figure 2(c)) (City of Cambridge 2004). As a final step, the two groups of 

points were triangulated using a Delaunay algorithm (Figure 2(d)), resulting in a highly accurate and detailed 3D 

model of the entire City of Cambridge that consists of 16,547,790 triangular surfaces. 

 

(a) Birds-eye image of the Kresge Oval (Google) 

 

(b) Initial, nonuniformly dense LiDAR point data 

 

(c) Resampled and categorized LiDAR points 

 

(d) Resulting 3D model 

Figure 2 Process Images of 3D Model Generation from LiDAR and GIS Data 
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Hourly Simulations with Radiance/Daysim 

The triangulated surface model was then converted into the Radiance backward raytracer format. In Radiance each 

surface may have different, highly customized, optical surface properties. In the authorsô model it is assumed that 

building walls are Lambertian diffusers with a 35% reflectance while the surrounding landscape has a diffuse 

reflectance of 20%. Rooftop reflectances and absorptivities were calibrated based on information from the City of 

Cambridge Tax Assessorôs Database for roofing material (City of Cambridge 2011). Annual irradiation was then 

calculated on each building roof surface at a grid resolution of 1.5x1.5m (5ôx5ô). Simulation sensor points are 

located approximately 0.5mm (1/64ò) above and facing in the normal direction of the roof surface.  

Simulations are performed with Daysim, a validated fork of the Radiance program that uses a daylight coefficient 

approach (Mardaljevic 2000) and the Perez all-weather sky model (Perez, et al. 1993) to predict annual point 

illumination and irradiation while considering climate-specific data (Daysim 2013). Daysim works by performing 

one raytrace operation to a sky dome consisting of 145 diffuse sky segments, 3 ground segments and a second 

raytracing run with approximately 65 direct solar positions that are distributed along the annual solar path. By 

tracing backwards from the simulation sensor points, each sky segment and solar position is then weighed relative to 

its contributions to each point in the scene. In this manner, irradiation can be simulated for an entire year in any 

incremental time step without running thousands of separate and lengthy raytracing calculations while considering 

measured typical climate information, contextual shading and reflections based on a detailed three-dimensional 

geometric model. In the authorôs study, irradiation simulations were performed at an hourly timestep. Daysim has 

been shown by many studies to be highly accurate in modeling visible wavelength natural light in diverse climates 

and sky conditions (Reinhart and Walkenhorst 2001, Reinhart and Andersen 2006, and Reinhart and Breton 2008, 

Jakubiec and Reinhart 2013). Ibarra and Reinhart (2011) compared Daysim predictions of irradiation against a 

measured dataset and showed that Daysim is able to accurately resolve temporal variations in longwave solar 

irradiation in urban contexts. 

Table 2 documents the Daysim simulation parameters used in the authorsô simulation in order to ensure simulation 

accuracy. Parameters were primarily considered in relation to the unusually large size of the Cambridge model. 

Errors in the ambient calculation were calibrated to be acceptable for surfaces spaced four feet apart and larger. As 

the model was resampled at this resolution in plan and simulation sensor points are spaced beyond this threshold, the 

assumption seems reasonable. According to Ward, error will ñincrease on surfaces spaced closer than the scene size 

divided by the ambient resolutionò (Rtrace man page 2012). Thus the Radiance scene size of 26,526.5 ft divided by 

four gives an ambient resolution of approximately 6,750. This means that ambient interpolation is unlikely to occur 

across separate triangles in the scene which may have different orientations and solar condtions. Ambient divisions 

are set at 2048 such that for each sensor point and ray reflection, 2048 rays are cast to sample the ambient 

environmental conditions. In essence, the model accounts for any geometry which occupies a perceived solid angle 

larger than 0.0031 sr. Direct contribution is sampled deterministically for each ray reflection. The simulation 

considers up to two ambient reflections from direct solar irradiation and one reflection from diffuse sky irradiation 

from the environment (ambient bounces, ab). 

Table 2 Key Radiance/DAYSIM Simulation Parameters 

PARAMETER  DESCRIPTION VALUE  

ab 

ad 

as 

ar 

aa 

ambient bounces 

ambient divisions 

ambient super-samples 

ambient resolution 

ambient accuracy 

2 

2048 

16 

6750 

0.1 

Calculation of Photovoltaic Yield 

As previously discussed, a key benefit of the new method is direct access to hourly simulated irradiation data and 

the detailed Perez sky model that approximates actual sky radiance distributions for each hourly time step in the 

year. Knowing in addition the explicit area beneath each simulated point and information about the urban climate, a 

reasonable calculation can be made for the performance of a PV panel in an urban context.  
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A direction vector is assigned to each simulation sensor point based on the normal direction of the roof surface 

immediately below it. Assuming that the roof is planar and unvarying below the area the point represents, ~1.5m
2
 in 

this case, a method of calculating the area is shown in Equation 1 and illustrated in Figure 3, where ὲᴆ is the unitized 

roof surface normal vector.  

 

Figure 3 Illustration of the geometric terms in Equation 1 
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PV performance is dependant on many factors which are unknown at the time of making a conceptual irradiation 

map such as module efficiency, panel orientation, wiring and equipment and maintainance conditions. However, it is 

known that high ambient temperature and solar radiation heating up the panel will have an adverse effect on its 

production. Furthermore, air temperatures near urban rooftops will be higher than the ambient air temperature due to 

the effects of solar radiation; therefore, the sol-air temperature is used to approximate this phenomenon, shown in 

Equation 2. The sol-air temperature is the urban ambient temperature (Tamb-air, Јὅ) plus the absorptivity of the roof 

( ,θ percent) multiplied by the incident irradiation (E, Wm
-2
) and divided by a convective and radiative loss factor 

(hc, Wm
-2
-K) which we assume to be a constant 15 Wm

-2
-K. In the model, rooftop absorptivity is estimated per 

building based on roof type data in the Cambridge Tax Assessorôs database (City of Cambridge 2011). The sol-air 

temperature is used to predict panel temperatures in Equation 3 by relying upon knowledge of the nominal operating 

cell temperature at Nominal Operating Cell Temperature (T0) (Luque and Hegedus 2011). Further, the photovoltaic 

maximum power at ideal conditions (ὖ ȟὡ) can be derated based on a temperature correction factor (‎, %/ęK) 

(Equation 4) (Marion, et al. 2001). The temperature correction factor is usually provided by PV panel manufacturers 

with panel specification information. Huld et al. (2006) predicted monthly average temperature profiles of Europe to 

use in calculating PV efficiency reductions. Their results were implemented in the PV-GIS web service; however, an 

annual efficiency reduction factor was used. In the authorsô new method, it is possible to resolve this efficiency loss 

on an hourly basis.  

Equations 1-4 are used as a first-order approximation in derating panel efficiency based on ambient air temperature 

and point irradiation at each hourly timestep. 

Determination of Useful Rooftop Area 

Useful rooftop area in the model is calculated based on the predicted economic feasibility of panels installed at a 

location. Any roof surface sloping greater than 60 degrees (67%) was discarded and instead considered to be a 

vertical surface or wall. The reader should note that this cutoff was an arbitrary choice and the method itself would 

also be capable of modelling façade integrated photovoltaics by generating simulation sensors on such wall surfaces. 
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No rooftop setback was considered in this study; therefore, useful rooftop area can extend to the edge of the roof 

surface.  

According to the Massachusetts Clean Energy Center, in 2011 the average PV installation costs were $5.67 per watt 

in Cambridge (MassCEC, 2012). Assuming a typical panel that is rated at 185W/m
2
 (17.2 W/ft

2
) (Sunpower 

E18/230W 2012), the installation cost follows to be $1049.70/m
2
 ($97.52/ft

2
). The 2012 Cambridge cost of 

electricity for residential customers was $0.15/kWh which is fixed for the duration of the financial analysis. 

Requiring a ten year investment period with a ten percent discount rate per year, 1244.9 kWh/m
2
-yr (115.7 kWh/ft

2
-

yr) would have to be generated to have a net present value (NPV) in which the investment breaks even, when NPV 

equals zero. An ideally oriented solar panel in Cambridge receives approximately 1600 kWh/m
2
-yr (149 kWh/ft

2
-yr) 

of solar irradiation annually and would hence require a panel efficiency of nearly 80% in Cambridge for the system 

to break even in ten years. If one only required a simple payback over the same 10 year period, the panel efficiency 

would still need to be nearly 50%. 

National and state rebate programs that exist to improve the economic feasibility of PV for residential properties 

seriously change the financial outlook of such installations. In 2012 the US federal government offered a 30% tax 

rebate on the cost of a PV installation (Energy Improvement and Extension Act 2008). Further, Massachusetts 

offered a 15% rebate up to a maximum of $1,000 that could be carried over for three years (Residential Renewable 

Energy Income Tax Credit 1979). The Massachusetts Clean Energy Center offered a minimum $0.40/W rebate on 

new PV systems (MassCEC 2012). Massachusetts also offered a 100% protection from increased property taxes due 

to PV installations for a 20 year period (Renewable Energy Property Tax Exemption 1975). Finally, Solar 

Renewable Energy Certificates (SRECs) are ways of trading proof of generating sustainable energy as a commodity. 

The ófloorôprice of these commodities is currently valued at $0.285/kWh (DSIRESOLAR 2012). Factoring these 

rebates and incentives into the previous NPV calculation, it is possible to have a break even point for an unshaded 

panel at 7.5% efficiency without accounting for future energy prices or PV panel degredation. This means that 

considering an investment period of 10 years for an example Sunpower panel, any point which has the capacity to 

generate over 121 kWh/m
2
 (11.25 kWh/ft

2
) of energy per year is likely to recoup its value while providing additional 

savings after the initial 10 year period as the effective lifetime of a PV system is known to be typically greater than 

30 years. Thus such points and their associated roof areas are considered to be useful to install PV panels. As the 

point-based simulation results from this study are displayed spatially (see results section), it is possible to determine 

optimal placement locations for PV panels coincident with urban rooftops.  

Geolocation of Data From GIS to Radiance Simulation Models 

All GIS models including the LiDAR data and building footprints were constructed in the projected North American 

Datum 1983, Massachusetts State Plane Mainland coordinates system (Schwarz and Wade 1990). This is a 

serendipitous choice as distances and areas can still be measured without necessitating geographic corrections. Thus, 

the Radiance/Daysim simulation model was built in an identical coordinate system. The Massachusetts State Plane 

system also has a known relationship between X and Y coordinates and latitude and longitude global coordinates. It 

is possible to translate easily between the two coordinate systems by use of an Inverse Lambert Conformal Conic 

Projection with proper geospatial parameters. 

 

RESULTS AND DISCUSSION 

Comparison of Predictions and Measured Data 

The new method was validated against measured energy production from two installed photovoltaic systems in 

Cambridge. One system is located on the MIT campusô student center building, and the other on a private residence. 

For each system, hourly measured energy production is compared to hourly predicted energy production. The reader 

should note that this hourly comparison is only conducted with the new method since most previous methods cannot 

predict hourly electricity yields and cannot be reasonably calibrated to use custom hourly weather data.  

The first of the two systems is a 7.2 kW system installed on the roof of the student center, and the second is a 5.9 

kW system in a dense residential area of Cambridge. The student center system consists of 24 Schott 300W panels 

that were installed approximately nine years ago. The residential system consists of 30 Sanyo 195W panels that are 

two years old. Detailed information for both systems is contained in Table 3 below, and Figure 4 shows the 

simulation models used in the validation. Both of the models include the detailed surrounding urban context and 
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accurate representations of the photovoltaic panels being compared to. The student center system is installed nearly 

flat with a panel tilt of 5 degrees while the residential system is installed on a peaked roof which has a tilt of 50 

degrees. The student center system is primarily unshaded by its context; however, trees and a chimney shade small 

portions of the residential system during some times of the year near sunset. Furthermore, the student center system 

has a black asphalt roof while its residential counterpart has a light colored roof. The values reported in Table 3 for 

rooftop absorptivity were estimated based on visual observations. Because the two models are very different in 

terms of orientation, geometry and roof color, we suggest that they constitute a reasonable sample of common urban 

conditions against which to test the new method. 

 

Table 3 System Parameters of Selected PV System 

PARAMETER  STUDENT CENTER RESIDENCE 

Panel Count 

PV Model 

Efficiency at Ideal Conditions 

Power at 1,000 W/m2, 25ºC (Pmp0) 

Temperature Correction Factor (ɔ) 

Panel Tilt 

Panel Azimuth 

Inverter Efficiency 

Panel Age 

Estimated Rooftop Absorptivity 

24 

Schott ASE-300-DGF/50 

12.3 % 

300 W 

0.47 % / ºK 

5 degrees 

22 degrees East of South 

94 % 

9 years 

0.9 

30 

Sanyo HIP-195BA19 

16.8% 

195 W 

0.348% / ºK 

50 degrees 

3 degrees West of South 

96% 

2 years 

0.35 

 

 

(a) Student Center Simulation Model 

 

 

(b) Residence Simulation Model 

Figure 4 Detailed Building Simulation Models in Urban Context  
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Validation Procedure 

In order to compare measured PV energy yields to simulated predictions, it was necessary to use weather data from 

the period of measurement. For this purpose, global horizontal solar irradiation and ambient air temperature 

measurements at 15 minute intervals were acquired from a weather station approximately 0.6 miles (1km) away 

from the MIT campus for the period of July 2011 ï June 2012 (Cambridge, Massachusetts Weather 2012). These 

were averaged into hourly values, and the resulting global horizontal solar irradiation was converted into direct 

normal and diffuse horizontal components using the Reindl model (Reindl et al. 1990). Further, the known 

information in Table 3 regarding the two PV panel systems was employed in calculating the resulting energy 

production using the same procedure as explained in the methodology section. Panel efficiency was further reduced 

by a factor of 0.5% per year of operation as has been shown typical in the studies of King and Quintana (King et al. 

1998, Quintana et al. 2002). For example, the nine year old student center PV system is reduced by a factor of 4.5% 

as it is nine years old such that the calculation ρςȢσϷz ρȢπ ωώὶίzπȢππυϷȾώὶ results in a reduced base 

efficiency of 11.75%. Detailed geometric models of the panel systems were digitally constructed to remove 

geometric differences as factors in the comparison. 

Typical Summer and Winter Week Hourly Simulation Results 

Figure 5 illustrates typical summer and winter weeks of hourly measured and simulated data for both analyzed PV 

installations. The residential system does not have winter week information as there was systematic missing and 

shifted data for that portion of the year. The solid black lines represent measured energy generation while the red 

lines indicate predicted energy generation by our model using the predicted sol-air temperature. The black dotted 

lines show predicted energy generation using the ambient urban air temperature. Figures 5(a) and 5(b) show results 

for the student center system. 5(a) illustrates a summer week in 2012. For this week, measured and predicted energy 

values are very similar with a RMSE which is 4.4% of the rated system capacity during daylit hours. 5(b) shows 

similar results during the 2011 winter with a RMSE equating to 4.7% of the system capacity during daylit hours. 

5(c) illustrates a typical summer week of the residential PV system. Its RMSE during daylit hours is 7.3% of the 

rated system capacity. Overall, the good agreement between simulation results and measured data suggests that the 

new method is capable of accurately representing temporal changes in PV yield during hot and cold periods of the 

year. 

An interesting observation is that the effect of high rooftop temperatures is very strong during hot Summer days in 

Cambridge, especially for the unshaded student center system located on the dark roof with an estimated 

absorptivity of 0.9. Figure 5(a) shows that the predicted energy using ambient temperature (black dotted line) varies 

from the measured and predicted energy values (solid black and red lines) for the student center by on average 

18.3% during the summer week. The maximum deviation during this same time is 36.7% on 7/3. Figure 5(c), 

displaying the residential systemôs PV yields, reports a weaker temperature effect because its panels are less 

sensitive to changes in temperature (see temperature correction factor (ɔ) in Table 3), and the rooftop of the 

residential system is clad in a lighter colored material having an estimated absorptivity of 0.35. During the winter, 

the ambient temperature is cold enough that it is a rare occurrence where the predicted energy using ambient air 

temperature and sol-air temperature vary; however, on 12/16 and 12/20 shown in Figure 5(b), there are peak periods 

where there is an observable reduction in predicted energy generation due to higher PV panel temperatures. These 

observations suggest that the consideration of urban rooftop temperature is important in understanding photovoltaic 

yields of panels coincident with rooftops, especially in climates that are warm for a portion of the year and for 

buildings with highly absorptive roof surfaces.  
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(a) Student Center Measured vs Simulated Summer Week Hourly PV Energy Production 

 

(b) Student Center Measured vs Simulated Winter Week Hourly PV Energy Production 

 

(c) Residence Measured vs Simulated Summer Week Hourly PV Energy Production 

 
 

Figure 5 Hourly Results of Simulations Compared to Measurements for Example Winter and Summer Weeks 
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Daily Results 

Cumulative daily energy production information was available for each system. Figure 6 contains daily information 

from the second half of 2011 and the first half of 2012; therefore, it constitutes an entire year of analysis. Days 

where measured weather data was not available or there were errors in the measured PV yield datasets were 

removed from this analysis. The plots 6(a) and 6(b) show measured energy production on the horizontal axis and 

predictions of energy production on the vertical axis. The identity lines on each illustrate an ideal data distribution 

where prediction matches reality perfectly. It can be seen that for all simulated days the agreement between 

simulations and reality is strong as points are clustered about the identity lines. For the student center PV system, the 

daily RMSE is 9.3% of the daily average production of 21.72 kWh. The RMSE of the residential system predictions 

is 9.4% of the daily average production of 23.22 kWh. The greatest error is observed on partially cloudy days where 

the Perez sky model is unable to resolve the position of clouds in the sky based solely on measured global horizontal 

irradiation. 

 

(a) Student Center 

 

(b) Residence 

Figure 6 Measured vs Simulated Daily PV Energy Production 

Annual Results 

Annually the student center simulations predicted 3.6% less energy production than was measured (6365.7 kWh 

measured, 6136.5 kWh simulated). The residential system predicted 5.3% less energy production than was measured 

(5154.6 kWh measured, 4881.3 kWh simulated). To help contextualize the meaning of these numbers, predictions 

were made for each system using a complete set of measured irradiation and temperature data from the same 

weather station for 2008, 2009, 2010 and 2011. The maximum variance in predicted production between the four 

years was 5.19% and 5.82% for the student center and residential PV systems respectively. This suggests that the 

predicted annual error using the new method presented in this paper and calibrated weather data is less than variance 

which can be expected from climactic differences between years. 

Methodological Comparison ï Two Cambridge Rooftops 

In the previous section it was demonstrated that the new method is accurate within 3.6 to 5.3 percent annually when 

compared to measured data and calibrating for actual weather. Since the prediction methods reviewed in the 

introduction cannot accommodate measured weather data as input, this section compares simulation results from the 

new method for the two Cambridge rooftop systems to the calculation methodologies reviewed in the introduction. 

The methods used in the comparison are PVWatts, Solar Analyst, r.sun and a solar constant methodology. In all 

cases, the closest possible geometric models were used. Using PVWatts, the exact geometric parameters of each PV 

array were input into the program. For Esriôs Solar Analyst and r.sun, a highly detailed DEM was created based on a 

point sampling of the geometric models pictured in Figure 4 every 0.125 meters. Furthermore, we assume that all 


